УДК 519.854

ПАРАМЕТРИЧЕСКОЕ ОКРЕСТНОСТНОЕ МОДЕЛИРОВАНИЕ ПЕЧИ ОБЖИГА КЛИНКЕРА

© А.М. Шмырин, И.А. Седых, А.П. Щербаков, А.Г. Ярцев, Е.С. Аникеев

Ключевые слова: билинейная окрестностная модель; параметрическая идентификация. Рассматривается билинейная окрестностная модель печи обжига клинкера, представлен переход модели к параметрическому виду.

ВВЕДЕНИЕ

Производство цемента состоит из нескольких этапов, ключевым из которых является обжиг клинкера во вращающихся печах [1]. В работе рассматривается вопрос моделирования печи обжига как сложного распределенного по зонам процесса.

Исходя из технологического разбиения процесса на стадии обжига в зависимости от температуры, рассмотрена дискретная распределенная модель. Для данных моделей существуют обобщающие окрестностные системы, методы и алгоритмы идентификации которых хорошо известны. Ставится задача моделирования процессов обжига клинкера окрестностными системами.

ОКРЕСТНОСТНОЕ МОДЕЛИРОВАНИЕ ПЕЧЕЙ ОБЖИГА КЛИНКЕРА

Печь условно можно разделить на четыре зоны, которые были приняты в качестве узлов билинейной окрестностной модели. Связь между узлами представлена в виде графа на рис. 1, где 1 – зона подогрева сырья; 2 – зона декарбонизации; 3 – зона появления клинкера; 4 – зона охлаждения.

Билинейная окрестностная модель для 4-х узлов имеет вид [2]:

$$\begin{split} & \left\{w_{x}[1,1] \cdot x[1] + w_{x}[1,2] \cdot x[2] + w_{v}[1,1] \cdot v[1] + \\ & + w_{xv}[1,1,1] \cdot x[1] \cdot v[1] + w_{xv}[1,2,1] \cdot x[2] \cdot v[1] = 0; \\ & w_{x}[2,1] \cdot x[1] + w_{x}[2,2] \cdot x[2] + w_{x}[2,3] \cdot x[3] + w_{v}[2,2] \cdot v[2] + \\ & + w_{xv}[2,1,2] \cdot x[1] \cdot v[2] + w_{xv}[2,2,2] \cdot x[2] \cdot v[2] + \\ & + w_{xv}[2,3,2] \cdot x[3] \cdot v[2] = 0; \\ & w_{x}[3,2] \cdot x[2] + w_{x}[3,3] \cdot x[3] + w_{x}[3,4] \cdot x[4] + w_{v}[3,3] \cdot v[3] + \\ & + w_{xv}[3,2,3] \cdot x[2] \cdot v[3] + w_{xv}[3,3,3] \cdot x[3] \cdot v[3] + \\ & + w_{xv}[3,4,3] \cdot x[4] \cdot v[3] = 0; \\ & w_{x}[4,3] \cdot x[3] + w_{x}[4,4] \cdot x[4] + w_{v}[4,4] \cdot v[4] + \\ & + w_{xv}[4,3,4] \cdot x[3] \cdot v[4] + w_{xv}[4,4,4] \cdot x[4] \cdot v[4] = 0. \end{split}$$

Для печи обжига были выделены существенные компоненты управления и состояния, представленные в табл. 1.

Рис. 1. Граф зон вращающейся печи

Зададим значения компонент состояния и управления и проведем идентификацию билинейной окрестностной модели (1) по разработанным ранее алгоритмам [2].

Будем считать, что для зон одной печи скорость вращения одинакова: v[1] = v[2] = v[3] = v[4]. Значения состояния и управления, в соответствии с технологическими параметрами печей обжига клинкера, равны:

В связи с разным порядком входных данных произведем их нормализацию по следующей формуле:

$$x' = \frac{x - \bar{x}}{\sigma},\tag{2}$$

Таблица 1

Компоненты состояния и управления печи обжига клинкера

v[1]	Скорость вращения печи, об./мин.
v[2]	Скорость вращения печи, об./мин.
v[3]	Скорость вращения печи, об./мин.
v[4]	Скорость вращения печи, об./мин.
<i>x</i> [1]	Температура печи в зоне подогрева, °С
<i>x</i> [2]	Температура печи в зоне декарбонизации, °С
<i>x</i> [3]	Температура печи в зоне появления клинкера, °С
<i>x</i> [4]	Температура печи в зоне охлаждения, °С

где x – нормализуемое значение; \bar{x} – среднее арифметическое; σ – среднеквадратическое отклонение значений.

После нормализации получаем:

x[1] = -1,3175; x[2] = -0,09086;x[3] = 1,49922; x[4] = -0,09086.

В результате идентификации билинейной окрестностной модели (1) были получены следующие значения параметров:

$$\begin{split} & w_x[1,1] = 0,43005; \ w_x[1,2] = 0,3006774; \\ & w_x[2,1] = 0,24556; \ w_x[2,2] = 0,009139; \\ & w_x[2,3] = -0,150811; \ w_x[3,2] = 0,095411; \\ & w_x[3,3] = -1,574269; \ w_x[3,4] = 0,095411; \\ & w_x[4,3] = -0,294312; \ w_x[4,4] = 0,017831; \\ & w_{xv}[1,1,1] = 0,43005; \ w_{xv}[1,2,1] = 0,455526; \\ & w_{xv}[2,1,2] = 0,200795; \ w_{xv}[2,2,2] = 0,32544; \\ & w_{xv}[2,3,2] = -0,228487; \ w_{xv}[3,2,3] = 0,144555; \\ & w_{xv}[4,3,4] = -0,445886; \ w_{xv}[4,4,4] = 0,43137. \end{split}$$

Представим, что переменные v[1], x[1] и x[4] постоянны, а x[2] и x[3] изменяются. Тогда, сложив уравнения системы (1), получим:

$$1,80739 \cdot x[2] - 2,43921 \cdot x[3] + 1,23127 = 0.$$
(3)

Решение уравнения (3) представим в виде графика (рис. 2).

Допустимые значения переменной x[2] лежат в пределах от 830 до 1100 °С, переменной x[3] – в пределах от 1100 до 1450 °С. Путем отбора определили, что допустимые решения изменяются от 1100 до 1216,29 для x[3] и от 943,06 до 1100 для x[2]. Эти значения есть зона возможного управления переменными.

Для учета всех переменных управления и состояния и построения графика отклонений системы выразим все переменные управления v и состояния x через независимые параметрические переменные U и P.

Представим окрестностные переменные x и v через параметрические переменные U и P на примере x[1]. Допустимые значения переменной x[1] лежат в пределах от 100 до 830 °C. В соответствии с методикой [3] примем, что значение U и значение P изменяются от $U_1 = P_1 = \text{const до } U_2 = P_2 = \text{const. Сопоставим эти значения (табл. 2).$

Рис. 2. Решение уравнения (3) с указанием зон недопустимых и допустимых решений

Таблица 2

Квадратичная	зависимость	нормализованных
значени	ий <i>х</i> [1] от зна	чений U и P

U	Р	<i>x</i> [1]	<i>x</i> [1] нормализ.		
-1000	-1000	100	-4,633962401		
-1000	-500	102,4333333	-4,622907524		
-1000	0	107,3	-4,600797768		
-1000	500	114,6	-4,567633136		
-1000	1000	124,3333333	-4,523413625		
-500	-1000	136,5	-4,468139237		
-500	-500	151,1	-4,401809971		
-500	0	168,1333333	-4,324425828		
-500	500	187,6	-4,235986807		
-500	1000	209,5	-4,136492908		
0	-1000	233,8333333	-4,025944132		
0	-500	260,6	-3,904340478		
0	0	289,8	-3,771681947		
0	500	321,4333333	-3,627968538		
0	1000	355,5	-3,473200251		
500	-1000	392	-3,307377086		
500	-500	430,9333333	-3,130499044		
500	0	472,3	-2,942566125		
500	500	516,1	-2,743578328		
500	1000	562,3333333	-2,533535653		
1000	-1000	611	-2,3124381		
1000	-500	662,1	-2,08028567		
1000	0	715,6333333	-1,837078362		
1000	500	771,6	-1,582816177		
1000	1000	830	-1,317499114		

Далее найдем квадратичную зависимость нормализованных значений x[1] (4 столбец табл. 2) от значений U и P (1 и 2 столбцы). Аналогичные действия проведем и для остальных переменных окрестностной модели. В результате получаем следующие зависимости:

$v[1] = 1,4598 + 9,5833 \cdot 10^{-3} \cdot U + 1,19167 \cdot 10^{-3} \cdot P +$
$+3,8333\cdot10^{-8}\cdot U^{2}+1,5333\cdot10^{-8}\cdot U\cdot P+1,5333\cdot10^{-9}\cdot P^{2};$
$x[1] = -3,7717 + 0,0014 \cdot U + 0,0003 \cdot P +$
$+5,5274 \cdot 10^{-7} \cdot U^{2} + 2,211 \cdot 10^{-7} \cdot U \cdot P + 2,211 \cdot 10^{-8} \cdot P^{2};$
$x[2] = -0,9986 + 0,0005 \cdot U + 0,0001 \cdot P +$
$+2,0444 \cdot 10^{-7} \cdot U^2 + 8,1776 \cdot 10^{-8} \cdot U \cdot P + 8,1776 \cdot 10^{-9} \cdot P^2;$
$x[3] = 0,3226 + 0,0007 \cdot U + 0,0001 \cdot P +$
+ $2\delta 6501 \cdot 10^{-7} \cdot U^2$ + 1,0601 $\cdot 10^{-7} \cdot U \cdot P$ + 1,0601 $\cdot 10^{-8} \cdot P^2$;
$x[4] = 1,0858 - 0,0007 \cdot U - 0,0001 \cdot P +$
$-2.6501 \cdot 10^{-7} \cdot U^2 - 1.0601 \cdot 10^{-7} \cdot U \cdot P - 1.0601 \cdot 10^{-8} \cdot P^2$

Складывая уравнения (1), получаем общее параметрическое уравнение системы:

$$\begin{aligned} a_{1} + a_{2} \cdot U + a_{3} \cdot P + a_{4} \cdot U^{2} + a_{5} \cdot U \cdot P + a_{6} \cdot P^{2} + \\ + a_{7} \cdot U^{3} + a_{8} \cdot U^{2} \cdot P + a_{9} \cdot U \cdot P^{2} + a_{10} \cdot P^{3} + \\ + a_{11} \cdot U^{4} + a_{12} \cdot U^{3} \cdot P + a_{13} \cdot U^{2} \cdot P^{2} + a_{14} \cdot U \cdot P^{3} + \\ + a_{15} \cdot P^{4} = 0. \end{aligned}$$

$$(4)$$

Таблица 3

U	Р	v[1]	<i>x</i> [1]	x[2]	<i>x</i> [3]	<i>x</i> [4]
200	4613,8	1,54909	596,3898	1003,246	1292,222	1257,786
-200	-22347	1,848083	1405,262	1367,445	1940,215	609,7938
100	4280,4	1,554172	611,1852	1009,131	1303,166	1246,842
-100	-22988	1,855506	1425,888	1376,228	1956,923	593,0857
50	4112,8	1,556717	618,5909	1012,078	1308,651	1241,358
-30	-23307,9	1,859208	1436,176	1380,609	1965,259	584,7496
0	3944,6	1,559264	626,0001	1015,028	1314,143	1235,866
0	-23627,2	1,862894	1446,413	1384,969	1973,565	576,4437
50	3775,9	1,561816	633,4217	1017,984	1319,646	1230,363
50	-23946,2	1,866578	1456,648	1389,328	1981,867	568,142
100	3606,6	1,564369	640,8441	1020,942	1325,154	1224,854
100	-24264,7	1,87025	1466,846	1393,672	1990,146	559,8625
200	3266,3	1,56948	655,6961	1026,864	1336,192	1213,817
200	-24900,4	1,877566	1487,162	1402,328	2006,654	543,3543

Часть решений уравнения (5)

В нашем случае:

 $\begin{aligned} &-1,68235+0,000867\cdot U+0,00034\cdot P+4,165\cdot 10^{-7}\cdot U^{2}+\\ &1,91\cdot 10^{-7}\cdot U\cdot P+1,95\cdot 10^{-8}\cdot P^{2}+5,8589\cdot 10^{-11}\cdot U^{3}+\\ &+3,69\cdot 10^{-11}\cdot U^{2}\cdot P+7,75\cdot 10^{-12}\cdot U\cdot P^{2}+5,4\cdot 10^{-13}\cdot P^{3}+\\ &+1,2\cdot 10^{-14}\cdot U^{4}--9,56\cdot 10^{-15}\cdot U^{3}\cdot P+2,87\cdot 10^{-15}\cdot U^{2}\cdot P^{2}+\\ &+3,83\cdot 10^{-16}\cdot U\cdot P^{3}+1,91\cdot 10^{-17}\cdot P^{4}=0. \end{aligned}$

Решения уравнения (5) представим в виде графика. Как видно из графика (рис. 3), одному значению U соответствуют два значения P. Линией выделена траектория решений, удовлетворяющая исходным переменным x и v, т. е. значениям параметрических переменных U и P, при которых исходные окрестностные переменные принадлежат своим областям допустимых значений состояния и управления.

Соответственно, другой линией выделена траектория решений, не удовлетворяющая исходным областям допустимых значений. Выпишем некоторые решения уравнения (5) и соответствующие им значения *x* и *v* (табл. 3).

Рис. 3. Траектория решений уравнения (5)

В табл. 3 курсивом выделены значения *P* и окрестностных переменных, которые выходят за область допустимых значений при данном *P*.

ЗАКЛЮЧЕНИЕ

В работе описана методика перехода окрестностной модели к параметрическому виду, позволяющая найти совокупность значений переменных, обеспечивающих минимальное отклонение значений левых частей уравнений системы (1) от нуля и попадание в технологические режимы. Построены графики для параметрической модели, способствующие определению сочетаний значений переменных, обеспечивающих зоны попадания в технологические режимы и их визуализацию.

ЛИТЕРАТУРА

- Голованова Л.В. Общая технология цемента: учебник для средних проф.-тех. училищ. М.: Стройиздат, 1984. 118 с.
- Блюмин С.Л., Шмырин А.М., Шмырина О.А. Билинейные окрестностные системы: монография. Липецк: ЛГТУ, 2006. 131 с.
 Щербаков А.П., Ярцев А.Г. Разработка билинейной окрестностной
- Щербаков А.П., Ярцев А.Г. Разработка билинейной окрестностной модели системы теплоснабжения на основе параметрических переменных // Актуальные проблемы естественных наук и их преподавания: девятая школа молодых ученых Липецкой области. Липецк, 19–20 сентября 2013, Липецк, 2013.

Поступила в редакцию 12 мая 2014 г.

Shmyrin A.M., Sedykh I.A., Shcherbakov A.P., Yartsev A.G., Anikeev E.S. PARAMETRIC NEIGHBORHOOD MOD-ELING OF CLINKER KILN

Bilinear neighborhood model of clinker kiln is considered, transition of this model to parametric mind is presented is presented.

Key words: bilinear neighborhood system; parametrical variables.

Шмырин Анатолий Михайлович, Липецкий государственный технический университет, г. Липецк, Российская Федерация, доктор технических наук, профессор, зав. кафедрой высшей математики, e-mail: amsh@lipetsk.ru

Shmyrin Anatoliy Mikhailovich, Lipetsk State Technical University, Lipetsk, Russian Federation, Doctor of Technics, Professor, Head of High Mathematics Department, e-mail: amsh@lipetsk.ru

Седых Ирина Александровна, Липецкий государственный технический университет, г. Липецк, Российская Федерация, кандидат физико-математических наук, доцент кафедры высшей математики, e-mail: sedykh-irina@yandex.ru Sedykh Irina Aleksandrovna, Lipetsk State Technical University, Lipetsk, Russian Federation, Candidate of Physics and Mathematics, Associate Professor of High Mathematics Department, e-mail: sedykh-irina@yandex.ru

Щербаков Артем Петрович, Липецкий государственный технический университет, г. Липецк, Российская Федерация, аспирант, ассистент кафедры высшей математики, e-mail: 6dragon9@mail.ru

Shcherbakov Artyom Petrovich, Lipetsk State Technical University, Lipetsk, Russian Federation, Post-graduate Student, Assistant of High Mathematics Mathematics, e-mail: 6dragon9@mail.ru

Ярцев Алексей Геннадьевич, Липецкий государственный технический университет, г. Липецк, Российская Федерация, студент физико-технологического факультета, e-mail: yartsevlekha@mail.ru

Yartsev Aleksey Gennadyevich, Lipetsk State Technical University, Lipetsk, Russian Federation, Student of Physics and Technology Faculty, e-mail: yartsevlekha@mail.ru

Аникеев Евгений Сергеевич, Липецкий государственный технический университет, г. Липецк, Российская Федерация, студент физико-технологического факультета, e-mail: emtec1994@yandex.ru

Anikeev Evgeniy Sergeyevich, Lipetsk State Technical University, Lipetsk, Russian Federation, Student of Physics and Technology Faculty, e-mail: emtec1994@yandex.ru